1 Gaussian Elimination

1.1 Concepts

1. In order to solve a system of equations to find the solution or determine if there are zero or infinitely many solutions, use Gaussian elimination on the augmented matrix, a matrix formed by appending the answer vector to the original matrix. A system of equations is consistent if there is at least one solution and inconsistent if there are no solutions.

1.2 Example

2. Use Gaussian elimination on the following augmented matrix. Write the equations these correspond to.

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -1 & -1 & 2 \\
-3 & 0 & -2 & -1
\end{array}\right)
$$

1.3 Problems

3. True False As soon as we see a row like ($000 \ldots 0 \mid 0$) during Gaussian elimination, we know that the system will have infinitely many solutions.
4. True False If we see a row like $(000 \ldots 0 \mid 0)$ then we know the determinant of the matrix.
5. Come up with an example of a consistent system of equations with 3 equations and 2 variables. Give an example of an inconsistent system of linear equations with 2 equations and 3 variables.
6. Find conditions on a, b such that the following system has no solutions, infinitely many, and a unique solution.

$$
\left\{\begin{array}{l}
x+a y=2 \\
4 x+8 y=b
\end{array}\right.
$$

7. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}-x_{3}=4 \\
-4 x_{1}-2 x_{2}+2 x_{3}=-6 \\
6 x_{1}+3 x_{2}-3 x_{3}=12
\end{array}\right.
$$

8. Find $\left(\begin{array}{lll}1 & 3 & 1 \\ 0 & 1 & 1 \\ 2 & 5 & 2\end{array}\right)^{-1}$.
9. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}-6 x_{3}=5 \\
2 x_{1}+4 x_{2}+12 x_{3}=-6 \\
x_{1}-4 x_{2}-12 x_{3}=9
\end{array}\right.
$$

10. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
z-3 y=-6 \\
x-2 y-2 z=-14 \\
4 y-x-3 z=5
\end{array}\right.
$$

1.4 Extra Problems

11. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
z-3 y=-2 \\
3 y-4 x-3 z=2 \\
2 z-x-y=-5
\end{array}\right.
$$

12. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
2 x+4 y-4 z=0 \\
5 x+y=6 \\
x-7 y+8 z=-6
\end{array}\right.
$$

13. Find $\left(\begin{array}{ccc}1 & 4 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 0\end{array}\right)^{-1}$.

2 Eigenvalues and Eigenvectors

2.1 Concepts

14. An eigenvalue eigenvector pair for a square matrix A is a scalar λ and nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$. To find this, we write $\lambda \vec{v}=\lambda I \vec{v}$ and bring this to the other side to get $(A-\lambda I) \vec{v}=0$. Since \vec{v} is nonzero, this means that $(A-\lambda I) \vec{w}=0$ has at least two solutions (since the trivial solution is a solution), and hence there must be an infinite number of solutions and $\operatorname{det}(A-\lambda I)=0$.

So to find the eigenvalues, we solve $\operatorname{det}(A-\lambda I)=0$. For a particular eigenvalue, to find the associated eigenvector, we have to use Gaussian elimination on $A-\lambda I$ to get the general solution.

2.2 Example

15. Find the eigenvalue and associated eigenvectors of $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$.

2.3 Problems

16. True False Associated to every eigenvalue is an eigenvector and vice versa
17. True False If 2 is an eigenvalue for A, then 4 is an eigenvalue for A^{2}.
18. True False If $\operatorname{det}(A)=0$, then 0 has to be an eigenvalue of A.
19. True False If 2 is an eigenvalue of A and 3 is an eigenvalue of B, then $2 \cdot 3=6$ is an eigenvalue of $A B$.
20. True False For each eigenvalue, there is only one choice of eigenvector.
21. Find the eigenvalues and eigenvectors of $\left(\begin{array}{cc}1 & 3 \\ 9 & -5\end{array}\right)$.
22. Find the eigenvalues and eigenvectors of $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$.
23. Find the eigenvalues of $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
24. Construct a matrix with eigenvalues 3 and -1 .
25. Find the eigenvalues of $\left(\begin{array}{ccc}2 & 4 & 4 \\ -1 & 0 & -1 \\ 1 & 0 & 1\end{array}\right)$.
